
3 THE BRADLEY-TERRY MODEL

Caution: These lecture notes are under construction. You may find parts that are incomplete.

3 The Bradley-Terry Model

We learned in Chapter ?? that a team’s past score differential is generally a stronger predictor of its future
winning percentage than is its past winning percentage. Missing from a team’s score differential is any
information about the quality of its opposition (i.e. strength of schedule). That is the focus of this chapter.

We start by introducing some mathematical notation to describe score differential. Suppose we have
a dataset of n games between p teams. For each game i ∈ {1, 2, ..., n}, we observe the home team hi ∈
{1, ..., p}; the away team ai ∈ {1, ..., p}; and the score differential yi (home score minus away score). We use
xij = {I(hi = j)− I(ai = j)} to indicate whether team j is home/away/inactive (+1/–1/0) in game i. From
these definitions, we calculate the average score differential per game for team j as:

sj =

∑n
i=1 xij · yi∑n

i=1 x
2
ij

.

Example: 1995-1996 Hogwarts Inter-House Quidditch Cup
Hogwarts quidditch data are woefully incomplete. The Inter-House Quidditch Cup is a round-rob (each
team plays each other team once) tournament in which the winner is determined by total number of
points scored. We know the results of four of the six matches from the 1996-96 cup:

Gryffindor def. Slytherin, 200-20
Hufflepuff def. Gryffindor, 240-230†

Hufflepuff def. Ravenclaw, 230-210*
Gryffindor def. Ravenclaw, 190-40*

There is no concept of “home team” in the cup, so let’s treat the first team alphabetically as the home
team in each match. Hufflepuff’s average score differential is:

(0 · 180 +−1 · −10 + 1 · 20 + 0 · 150)/(0 + 1 + 1 + 0) = 30/2 = 15

† Miraculously, this match only lasted 22 minutes!
* Result known but exact score unknown. Most likely score inferred from Rowling JK (2003) Harry
Potter and the Order of the Phoenix. See harrypotter.fandom.com/wiki/Inter-House_Quidditch_Cup

We may interpret sj as an estimate of the strength of team j. We could use these estimated strengths to
calculate a strength-of-schedule-adjusted score differential for each game. If oij is the opponent of team j in
game i, then we would achieve this with xij · yi + soij . This leads to a strength-of-schedule-adjusted average
score differential for team j:

s∗j =

∑n
i=1 xij · yi + soij∑n

i=1 x
2
ij

. (1)

Perhaps s∗j is a batter estimate of team strength than sj because it accounts for strength of schedule. So
maybe we can do better by replacing soij with s∗oij in the equation above. This would yield a better strength
estimate s∗∗j to replace s∗oij , and so on. Instead of repeating this operation indefinitely, let us jump straight
to the end with a cogent statistical model.

3.1 Modeling Score Differential

In its simplest form, the Bradley-Terry model describes the distribution of the random variable Yi, repre-
senting the score differential of game i:

ηi = β0 + βhi
− βai

Yi ∼ Normal(ηi, σ
2).

(2)
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3.1 Modeling Score Differential 3 THE BRADLEY-TERRY MODEL

This model model has p + 1 regression coefficients to estimate: one β for each team (interpretable as the
team’s strength), as well as β0 (interpretable as home-field advantage).1 Unfortunately, this model is not
identifiable, meaning that the parameters cannot be uniquely estimated from the data. To see this, note
that if we add any constant c to all team strengths, the predictions do not change because

β0 + βhi
− βai

= β0 + (βhi
+ c)− (βai

+ c)

for any c ∈ R. To make the model identifiable, we must introduce an additional constraint. The simplest,
most common constraint is to set β1 = 0, meaning that the first team is the reference team against which
all other teams are measured. Having established this constraint, we proceed with p regression coefficients
to estimate.

You may recognize this as a linear regression model. The simplest method for estimating the unknown
parameters is ordinary least squares (OLS). Using β to denote the p× 1 vector of regression coefficients, we
choose β to minimize the sum of squared residuals (equivalent to maximizing likelihood of the data):

β̂ = argmin
β

n∑
i=1

(yi − (β0 + βhi − βai))
2 s.t. β1 = 0. (3)

This optimization problem has a closed-form solution, which can be derived by finding where the gradient
is zero2 (because the objective function is convex and differentiable). To express the solution, it is helpful to
introduce matrix notation for the model. We use y to denote the n× 1 vector of observed score differentials
(y1, y2, ..., yn)

T , and we use X to denote the n× p matrix encoding the intercept (+1), home team (+1) and
away team (–1) of each game. Namely:

(X)ij =


+1 if j = 1 (intercept column)

+1 if hi is team j

−1 if ai is team j

0 otherwise

.

Note that every row of X has at most three nonzero entries: one +1 for the intercept, one +1 for the home
team and one –1 for the away team. Recall that team 1 is not represented in X (because of the constraint
that β1 = 0), so rows corresponding to games in which team 1 is active will have only two nonzero entries.
Because the vast majority of X is zero, we call it a sparse matrix.3 Using this notation, the OLS solution is:

β̂ = (XTX)−1XTy.

Example: 1995-1996 Hogwarts Inter-House Quidditch Cup

X =


1 0 0 −1
1 −1 0 0
1 1 −1 0
1 0 −1 0

 y =


180
−10
20
150

 β =


β0

βHufflepuff

βRavenclaw

βSlytherin


Because there is no home team, let’s drop the home-field advantage coefficient β0 from the model.

X =


0 0 −1

−1 0 0
1 −1 0
0 −1 0

 y =


180
−10
20
150

 β =

βHufflepuff

βRavenclaw

βSlytherin



β̂ =


 0 1 1 0

0 0 −1 −1
−1 0 0 0



0 0 −1
1 0 0
1 −1 0
0 −1 0




−1  0 1 1 0
0 0 −1 −1

−1 0 0 0



180
−10
20
150

 =

 −36.7
−103.3
−180.0


1The variance parameter σ2 is also a fixed, unknown parameter. It is considered a nuisance parameter because its estimation

has no bearing on the regression coefficients, which are of primary interest.
2We omit the details of this calculation. You can learn this in STAT 315 or DSCI 301.
3The most notable aspect of sparse matrices for our needs is that we can leverage them for computational speedups.
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3.2 Modeling Win-Loss Outcome 3 THE BRADLEY-TERRY MODEL

We interpret β̂j , the element of β̂ corresponding to team j, to be the estimated strength of team j.
A satisfying property of these estimated strengths is that they are a steady-state solution to equation (1),
meaning:

β̂j =

∑n
i=1 xij · yi + β̂oij∑n

i=1 x
2
ij

. (4)

In other words, β̂j is equivalent to the score differential for team j after adjusting for strength of schedule,

where team strengths are defined by β̂.

3.2 Modeling Win-Loss Outcome

Although we prefer to evaluate teams based on score differential for most applications, the Bradley-Terry
model can be generalized to model the win-loss outcome as well. The random variable Zi = I(Yi > 0)
represents an indicator of whether the home team wins game i.

ηi = β0 + βhi − βai

Zi ∼ Bernoulli

(
eηi

1 + eηi

)
.

(5)

We require the same constraint as in equation (2), that β1 = 0. You may recognize this as a logistic
regression model. As with linear regression, we choose β to maximize the log-likelihood of the observed data
z1, z2, ..., zn, equivalent to minimizing the negative log-likelihood:

β̂ = argmin
β

−
n∑

i=1

(
zi log

(
eηi

1 + eηi

)
+ (1− zi) log

(
1

1 + eηi

))
s.t. β1 = 0.

Unlike equation (3), this optimization problem does not have a closed-form solution, and it is solved using
an iterative algorithm.4

Discussion: When might you prefer to model win-loss outcome instead of score differential?

3.3 Predicting Future Outcomes

For both the linear regression model in equation (2) and the logistic regression model in equation (5), we
calculate the n× 1 vector η̂ of fitted values from the regression the same way:

η̂ = Xβ̂.

For the linear regression, η̂i is directly interpretable as the predicted score differential for game i, based on
the estimated strengths of the home and away teams. For the logistic regression, η̂i is the log-odds of the
home team winning game i. We can convert this to a probability by applying the logistic function:

ẑi =
eη̂i

1 + eη̂i
.

We can also produce predictions for unseen games by encoding the teams involved in a new matrix X̃.

4We omit the details of this calculation. You can learn this in STAT 410.
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3.4 Quiz Questions 3 THE BRADLEY-TERRY MODEL

Example: 1995-1996 Hogwarts Inter-House Quidditch Cup
We never got to see Ravenclaw play against Slytherin in the 1995-96 cup. According to the fitted
Bradley-Terry model above, what would be the expected score differential?

X̃β̂ =
[
0 1 −1

] [−103.3
−180.0

]
=

[
76.7

]
Or, to put it more simply, β̂Ravenclaw − β̂Slytherin = −103.3− (−180.0) = 76.7.

One interpretable insight we can draw from the estimated regression coefficients is an estimate for the
home-field advantage. In the linear regression, β̂0 is the estimated effect on the point spread in favor of the
home team. In the logistic regression, β̂0 is the estimated effect on the log-odds in favor of the home team.

Predicting the future outcomes is an important application for sports teams (because of the strategic
implications) and for sports bettors. The design matrix X does not encode future games, but the formula for
extracting predictions from the model is the same as for past games. For a future game between home team h
and away team a, the predicted score differential using the linear regression is β̂0+ β̂h− β̂a; and the predicted

probability of the home team winning using the logistic regression is eβ̂0+β̂h−β̂a/(1 + eβ̂0+β̂h−β̂a). To make
a large number of predictions in a computationally efficient way, one could encode the future matchups in a
new design matrix X̃ and extract the predictions using X̃β̂.

3.4 Quiz Questions

1. Why do we need to force β1 = 0 in the Bradley-Terry model?

2. Suppose we estimate the Bradley-Terry model and find β̂2 > 0. What does this tell us about team 2?

3. Suppose we estimate the win-loss outcome model and find β̂0 = 0.5; β̂2 = 1; and β̂p = 0.75. What is
the estimated probability that team p beats team 2 at home?
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