
8 MARKOV DECISION PROCESSES

Caution: These lecture notes are under construction. You may find parts that are incomplete.

8 Markov Decision Processes

In the previous chapter, we covered a simple example of how to use Markov reward processes for informing
in-game strategy in sports. In that example, the values of all states were known and static—from a starting
state, we chose the action corresponding to the resulting state with the highest value. The chosen action,
therefore, influences the value of that starting state. And future actions influence the values of the resulting
states between which we are choosing with our current action. The transition probabilities were estimated
using a dataset of observed transitions, but now we are choosing actions which influence those transitions.

In order to optimize decision-making in this setting, we need a framework to update recommended actions
while simultaneously updating the estimated value of each state. The model we use for this is called a Markov
decision process (MDP). An MDP is defined by four components:

1. a state space,

2. a transition probability function,

3. a reward function, and

4. an action space.

8.1 Actions

The action space is what distinguishes an MDP from a Markov reward process. The concept is that on
each transition from one state to a next, there is an action a ∈ A chosen which influences the transition
probability to the next state. The action space A is the set of all possible actions.

Because the action chosen from state s ∈ S determines the transition probability, the transition proba-
bility function p : S ×A×S → [0, 1] for an MDP depends on the action, not just the starting and resulting
states. We write p(s, a, s′) to denote the probability of transitioning to state s′ given that action a was taken
in state s. The MDP also allows for the possibility that the reward function r : S × A × S depends on the
action as well. We use r(s, a, s′) to denote the reward accrued on the transition from state s to state s′ on
action a.

8.2 Policies

A policy is a function π : S → A which maps states to actions. In other words, a policy tells you what action
to take from any state. For a given policy π, we use π(s) to denote the action taken from state s according
to the policy. We can think of a policy as a pre-determined set of actions for a decision-maker to follow:
Given the state s, there is a simple for for determining the corresponding action a.

Once the policy π is specified, all transition probabilities are specified, and we can determine the value
function vπ corresponding to the policy π. This bears repeating: The value function depends on the policy.
As we learned in the previous chapter, this value function will satisfy the Bellman equation:

vπ(s) =
∑
s′∈S

p(s, π(s), s′) · (r(s, π(s), s′) + vπ(s
′)).

The objective of an MDP is to learn the optimal policy π∗ which gives the appropriate action π∗(s) from
state s to maximize the value v(s) of state s. The optimal action from each state depends on the value
of each possible resulting state, but the value of each state depends on the policy, i.e. the action taken
from each state. We have a circular dependence here, but fortunately it is a similarly well-behaved circular
dependence as we saw with the Bellman equation in the previous chapter.
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8.2.1 Policy Iteration

We can generalize the Bellman equation in this setting to make the following claim about v∗, the value
function corresponding to the optimal policy π∗:

v∗(s) = max
a∈A

[∑
s′∈S

p(s, a, s′) · (r(s, a, s′) + v∗(s′))

]
. (1)

The strategy for finding v∗ satisfying (1) is the same as with value iteration for Markov reward processes
in the previous chapter. We naively initialize the value function and then repeatedly update it using the
equation (1). At each step, the policy updates according to the optimal action for the current iteration of
the value function. We repeat this step until convergence in the policy, rather than convergence in the value
function, and this is known as policy iteration.

In detail, the policy iteration algorithm is defined as follows:

1. Initialize v(0)(s) = 0 ∀ s ∈ S.

2. For step n = 1, 2, ... (until convergence in π)

(a) Update

v(n)(s) = max
a∈A

[∑
s′∈S

p(s, a, s′) ·
(
r(s, a, s′) + v(n−1)(s′)

)]
∀ s ∈ S,

π(n)(s) = argmax
a∈A

[∑
s′∈S

p(s, a, s′) ·
(
r(s, a, s′) + v(n−1)(s′)

)]
∀ s ∈ S.

Under mild assumptions, we are guaranteed that policy iteration will converge to the optimal policy π∗

and the corresponding value function v∗. This solution π∗ gives the optimal action from each starting state.

8.3 Examples

Nadimpalli and Hasenbein (2013) used an MDP to model the decision of whether to challenge an in/out call
in tennis. As their game state they used (1) the outcome of the point, (2) the score, (3) the number of
challenges remaining, (4) the probability that the call is correct and (5) the result of a successful challenge.
Each of these components is descretized into a few possibilities, yielding a total of 694 non-terminal states.
They provide the example state 233132, indicating that the server lost the current played point; the game
is at duece; they are left with one challenge; they are s3% sure that he can successful challenge; and the
point does not get replayed if they challenge correctly. In their model the decision-maker is the server,
and the action space is (c, nc), meaning challenge or do not challenge. They modelled their transition
probability function by introducing some parameters to describe point outcome probability. They defined
their reward function as 1 for each transition into a game-winning state (for the server) and 0 for all other
transitions. Having defined these components of their MDP, they followed policy iteration to calculate the
optimal policy, yielding a table that recommended whether or not to challenge from each possible game
state.

Van Roy et al. (2021) used an MDP to model player decision-making in soccer. As the game state they
used the location of the ball discretized into 374 squares on offense and 192 squares on defense, a total of
567 non-terminal states along with three terminal states: lost possession, no goal and goal. In their model
the decision-maker is the player in possession of the ball, and the action space contains the options of
attempting a shot or attempting to dribble the ball into any of the 374 offensive squares. They model the
transition probability by modelling a distribution of player intention, which we do not observe. They
defined their reward function as 1 for each transition into the goal state and 0 for all other transitions.
Rather than using policy iteration to determine the optimal policy, they present a sophisticated Bayesian
model for learning the policies followed by specific teams. They noted that the computation time for
estimating their policy model was 15 hours using a server with 128GB of RAM.

2 SMGT 430: Introduction to Sport Analytics
© 2024 Scott Powers



8.3 Examples 8 MARKOV DECISION PROCESSES

Hahn et al. (2024) used an MDP to model the decision made by a baserunner of how long to take their
leadoff from first base. As their game state they used (1) which bases were occupied by runners, (2) the
ball-strike count, (3) the number of disengagements already used by the pitcher, and (4) the number of outs.
This is a total number of 864 non-terminal states. For example, the state ((1, 0, 0), (3, 2), 1, 2) means that
there is a runner on first base; the count is full; the pitcher has used one disengagement; and there are two
outs. In their model the decision-maker is the baserunner, and the action space is [0, 20], meaning that
the runner can take any lead distance between 0 and 20 feet. They modelled their transition probability
function using mixed-effect logistic regressions with the lead distance as a fixed effect. They defined their
reward function as the number of runs scored on the transition between two states. Havine defined these
components of their MDP, they followed policy iteration to calculate the optimal policy, yielding a table
that recommended the optimal lead distance for the average runner in each possible game state. They also
generalized the model to make recommendations for baserunners of any talent level.
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