
4 PLUS-MINUS MODELS

Caution: These lecture notes are under construction. You may find parts that are incomplete.

4 Plus-Minus Models

In the previous chapter, we learned about using point differentials to estimate team strengths. For team
sports, we are often interested in estimating the strengths of individual players. This is particularly important
for teams who have to make player personnel decisions in the form of trades, free agent signings and draft
picks. In this chapter we will learn about one approach to player evaluation based on point differential when
the player is on the field. The stat Plus-Minus, popularized in hockey and basketball, is just that—the score
differential when the player is active in the game.

To formalize this mathematically, we will introduce some notation. We define a stint to be a period of
time during which no substitutions occur, meaning that the active players do not change during a stint.
Assume we have a dataset of stints numbered i = 1, 2, ..., n (which may span multiple games) and players
numbered j = 1, 2, ..., p. For each stint i, we observe the following:

• wi: the stint length, which may be measured by time (e.g. hockey) or possessions (e.g. basketball);

• yi: the normalized score differential (per unit of stint length) in favor of the home team; and

• xij : the +1/–1/0 indicator that player j is active for home/away/neither team in stint i.

The purpose of introducing the normalized score differential is to make apples-to-apples comparisons across
stints of different lengths. For player j, their cumulative Plus-Minus is

∑
i wixijyi, and their average Plus-

Minus is:

sj =

∑n
i=1 wi · xij · yi∑n

i=1 wi · x2
ij

. (1)

Discussion: What are strengths and weaknesses of using Plus-Minus for player evaluation?

4.1 Adjusted Plus-Minus

One drawback of Plus-Minus is that if one player typically plays alongside a particularly strong teammate,
this will inflate their Plus-Minus. In other words, Plus-Minus does not control for quality of competition
or quality of teammates. Our method for addressing this is directly analogous to the strength-of-schedule
adjustment we learned using the Bradley-Terry model in the previous chapter. We use the random variable
Yi to represent the score differential of stint i, and we model the distribution of Yi as follows:

ηi = β0 +
∑
j∈Hi

βj −
∑
j′∈Ai

βj′

Yi ∼ Normal(ηi, σ
2/wi).

(2)

We have p+1 regression coefficients to estimate: one β for each player (interpretable as the player’s strength),
as well as β0 (interpretable as home-field advantage). As in the previous chapter, this model is not identifiable,
so we must introduce an additional constraint. The simplest, most common constraint is to set β1 = 0,
meaning that the first player is the reference player against which all other players are measured. Having
established this constraint, we proceed with p regression coefficients to estimate.

Note one key difference between equation (2) and the Bradley-Terry model from the previous chapter.
In the Bradley-Terry model, the variance of Yi was assumed to be σ2 for each i. In the Adjusted Plus-Minus
model, the variance of Yi is σ2/wi, which is different for each i. This reflects the intuition that there is
more random noise involved in the normalized score differential for shorter stints. Because of this, when
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estimating the model, we want to put more weight on minimizing the error for longer stints. In contrast
with OLS, our criterion for estimating the regression coefficient vector β is weighted least squares (WLS):

β̂ = argmin
β

n∑
i=1

wi(yi − (β0 + βhi − βai))
2 s.t. β1 = 0. (3)

Note that this choice of β̂ is the maximum likelihood estimator of the model specified by equation (2).
We now introduce matrix notation to calculate the WLS estimator of the regression coefficients. We use

y = (y1, y2, ..., yn)
T to denote the n × 1 vector of score differentials; we use X to denote the n × p sparse

matrix of regression covariates; and we use W to denote the n× n diagonal matrix of observation weights:

(X)ij =

{
+1 if j = 1 (intercept column)

xij otherwise
, (W)ii′ =

{
wi if i = i′

0 otherwise
.

Lastly, we use β = (β0, β2, β3, ..., βp)
T to denote the p × 1 vector of regression coefficients. Then the WLS

estimate of β is:
β̂ = (XTWX)−1XTWy.

We interpet β̂j as the estimated strength of player j. As with the Bradley-Terry model, the Adjusted
Plus-Minus model comes with the following satisfying property:

β̂j =

∑n
i=1 wi

(
xij · yi −

∑
j′ ̸=j β̂j′xij′

)
∑n

i=1 wi · x2
ij

.

Compare this expression with the definition of average Plus-Minus in equation (1). Observe that the es-
timated strength of player j is equivalent to their average Plus-Minus, after adjusting for the estimated
strengths of all other players involved in player j’s stints. Hence the name: Adjusted Plus-Minus.

Discussion: What are strengths and weaknesses of using Adjusted Plus-Minus for player evaluation?

4.2 The Rasch Model

So far we have seen two models (Bradley-Terry and Adjusted Plus-Minus) that are variations on the same
concept. Whereas the Bradley-Terry model estimates team strengths, the Adjusted Plus-Minus model es-
timates player strengths. One may think of the Bradley-Terry model as a special case of a the Adjusted
Plus-Minus model, where every matchup involves one home player and one away player (and every stint is
the same length). In this section we introduce one more model which is yet another variation on this same
core concept.

One commonality between Bradley-Terry and Adjusted Plus-Minus is that each team (or player) can
appear on either side of each matchup: home or away. The strength of the team (or player) is the same
regardless of the side on which they appear (although there is an effect for home-field advantage). For many
adversarial interactions in sports, this restriction is not appropriate. Consider, for example, the matchup
between a batter and a pitcher in baseball. While it is true that batters may pitch and that pitchers may
bat on occasion, it is not reasonable to assume that a player’s batting strength is equal to their pitching
strength. Enter the Rasch model.

The Rasch model comes from the field of psychometrics. Originally it was used to model the performance
of students on test questions. Each student is assumed to have an ability, and each question is assumed to
have a difficulty. The probability of a successful answer is a function of the sum of the student’s ability and
the question’s difficulty. This framework applies well to many sports applications. For example, we may
assume that each batter has an ability and each pitcher has a difficulty, or vice versa.

For simplicity, we will describe the Rasch model in the context of modeling game scores. Unlike the
Bradley-Terry model, however, we will estimate separate offensive and defensive strengths for each team.
Assume we observe a set of team-scores yi (two team-scores per game) numbered i = 1, 2, ..., n involving
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teams numbered j = 1, 2, ..., p. For each team-score i, oi is the team that did the scoring, and di is the
team that allowed the scoring. Using Yi to represent the random variable for team-score i, we model the
distribution of Yi as follows:

ηi = β0 + βO
oi + βD

di

Yi ∼ Normal(ηi, σ
2).

Here we have introduced superscripts on βO to represent offensive strength and βD to represent defensive
strength (more negative = stronger defense). We have 2p+ 1 regression coefficients to estimate: one βO for
each team; one βD for each team; and the intercept β0. Once again, this model is not identifiable until we
introduce the additional constraint βO

1 = βD
1 = 0.

To fit the Rasch model, we must estimate the (2p−1)×1 vector β = (β0, β
O
2 , βO

3 , ..., βO
p , βD

2 , βD
3 , ..., βD

p )T .
We are back in the land of OLS, so we can use the familiar formula once we first establish the necessary matrix
notation. As before, the n× 1 vector y = (y1, y2, ..., yn)

T contains the observed team-scores. We construct
our n× (2p− 1) matrix X by concatenating 1 = (1, 1, ..., 1)T ∈ Rn, XO ∈ Rn×(p−1), and XD ∈ Rn×(p−1):

(XO)ij =

{
1 if oi = j − 1

0 otherwise
, (XD)ij =

{
1 if di = j − 1

0 otherwise
, X = (1,XO,XD).

Note that in this case, X is a sparse matrix with at most three nonzero entries (all equal to one) per row.
With this established, the OLS estimate of β is β̂ = (XTX)−1XTy.

The Rasch model is a generalization of the Bradley-Terry model in that the actors involved (teams or
players) can have separate roles and separate strengths in each of these roles. We could generalize this
further by allowing for non-normally distributed outcomes (as we saw with the Bradley-Terry model for
win-loss outcomes) and/or by allowing for unequally weighted observations (as we saw with the Adjusted
Plus-Minus model). Yet another way to generalize the Rasch model further is to allow for more than two
roles. For example, one may hypothesize that the catcher and umpire could have some effect on the outcome
of a baseball pitch (especially the ball/strike call if the batter does not swing). In this case, the linear term
in the model would take the form ηi = β0 + βB

bi
+ βP

pi
+ βC

ci + βU
ui
, including effects from batter, pitcher,

catcher and umpire. This is a flexible model that can describe the probability distribution of many different
outcomes of interest in sports.

Discussion: How is the Rasch model similar to the Bradley-Terry model? How is it different?

4.3 Quiz Questions

1. Why do we use Weighted Least Squares (WLS) instead of Ordinary Least Squares (OLS) to estimate
the Adjusted Plus-Minus model?

2. Which is it: Is the Adjusted Plus-Minus model a special case of the Bradley-Terry model? Or is the
Bradley-Terry model a special case of the Adjusted Plus-Minus model?
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