
1 REGRESSION TO THE MEAN

Caution: These lecture notes are under construction. You may find parts that are incomplete.

1 Regression to the Mean

If you have ever sorted a player leaderboard by a rate stat (e.g. on-base percentage in baseball, field goal
percentage in basketball, yards per rush in football), you know the importance of filtering the rows on a
minimum sample size threshold. If you do not perform this filtering, the top of your leaderboard is sure to
be full with players who have performed incredibly in tiny samples. These performances do not reflect the
true talent of the player because performance is the combination of talent and luck. The smaller the sample
size, the greater the role played by luck in determining the performance. In other words, the smaller the
sample, the greater the noise. Informally, we may write:

Performance = Talent + Luck. (1)

If a player is near the top of the leaderboard (high performance), this is evidence in favor of both high
talent and high luck. The smaller the sample size, the more plausible it is to attribute the performance to
exceptionally high luck, and the less evidence we have in favor of high talent.

The standard solution to this problem is to filter the leaderboard on some sample size threshold. This is
unsatisfactory because it fully discounts performance below the sample size threshold and applys no discount
to performance above the threshold. We would prefer a method that smoothly decreases the discount as the
sample size increases. Enter regression to the mean, which involves padding the observed performance with
some amount of weight on the league average (aka population mean). Using n to denote the sample size and
c to denote the weight on the population mean, the formula for regression to mean is:

n · (Observed Performance) + c · (Population Mean)

n+ c
. (2)

But how do we choose c?

1.1 A Statistical Model for Performance

A rate stat is the average of repeated performance by an athlete. Let Y1, Y2, ..., Yn be random variables
representing the performance of the athlete in n repeated trials. We assume1 that the repeated trials are
i.i.d. (independent and identically distributed) with mean µ and variance σ2. We can invoke2 the Central
Limit Theorem (CLT) to approximate the distribution of the average performance Ȳ as:

Ȳ =
Y1 + Y2 + ...+ Yn

n
∼ Normal(µ, σ2/n). (3)

We interpret µ as the true talent of the athlete, and σ2 is the noise associated with using observed
performance to measure true talent in a single trial. The objective of regression to the mean is estimating
µ. In the field of statistics, there are broadly two schools of thought for how to do this:

1. The Frequentist approach is to think of µ as a fixed, unknown value. Under this paradigm, the most
logical estimate for µ is the value that would be most likely to have generated the observed data Ȳ .
In this case, that value is Ȳ , so the Frequentist estimate is µ̂ = Ȳ . This is known as the maximum
likelihood estimate (MLE).

1This amounts to assuming that the expected performance on each trial is the same (regardless of competition faced and
other context) and that the outcome of one trial does not affect the outcome of another trial. This assumption is not literally
true in real life, and the implications of this are worth discussing. A story for another day.

2The CLT states that as the sample size increases toward infinity, the sampling distribution of Ȳ converges to a normal
distribution. We never have infinite sample sizes, but as a rule of thumb, this approximation works well for n ≥ 30 (depending
on multiple factors). Another story for another day.
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2. The Bayesian approach is to think of µ as an uknown random variable itself. This requires that
we specify a probability distribution for µ before observing any data. This is known as the prior
distribution. Using the prior distribution and the likelihood of the observed data, we use Bayes’ Rule
to calculate the posterior distribution of µ, i.e. a distribution that represents our uncertainty about µ
after observing the data.

For the problem of estimating athlete true talent, the Bayesian approach has advantages over the Fre-
quentist approach. For example, consider a basketball player who attempts five 3-point field goals and makes
all of them, a 3-point field goal percentage of 100%. Intuitively, 100% (the Frequentist estimate) is an absurd
estimate for the player’s true talent, especially based on such a small sample. The player would have to
maintain that performance over a much larger sample to convince us that their true talent is close to a 100%
field goal percentage. This intuition is exactly what the Bayesian approach captures.

1.2 The Bayesian Posterior Distribution

As noted in the previous section, the Bayesian approach requires that we specify a prior distribution on the
athlete’s true talent µ. Fortunately, there is a natural choice for this prior: the distribution of true talent
across a population of relevant population of athletes (e.g. all players in the same league). This corresponds
with our intuitive skepticism that an outlier performance represents an outlier talent. The prior distribution
is a mathematical formalization of our intuition that outlier true talent is rare.

Let us assume that the population distribution of true talent is normal with mean µ0 and variance σ2
0 .

We use this as our prior distribution for µ:

µ ∼ Normal(µ0, σ
2
0).

Suppose we observe the value ȳ for the random variable Ȳ . Using Bayes’ Rule3, we can combine the prior
distribution with the likelihood from equation (3) calculate the posterior distribution of µ given Ȳ = ȳ:

µ | Ȳ = ȳ ∼ Normal

(
(n/σ2)ȳ + (1/σ2

0)µ0

(n/σ2) + 1/σ2
0

,
1

n/σ2 + 1/σ2
0

)
. (4)

The mean of this posterior distribution is our formula for regression to the mean. It is the weighted average
of the observed performance (ȳ) and the population mean (µ0), and each is weighted according to the inverse
of its variance. We make the following observations:

1. As the population variance (σ2
0) decreases, we put more weight on the population mean (µ0) because

we have greater confidence that all players are close to the population mean.

2. As the noise variance (σ2/n) decreases, we put more weight on the observed performance (ȳ) because
we have greater confidence that the observed performance reflects true talent.

3. Our posterior mean matches equation (2) with c = σ2/σ2
0 .

We get ȳ and n from our data, but we still need σ2, µ0 and σ2
0 to perform regression to the mean. We

can estimate σ2 using the standard unbiased estimator for variance based on a sample of size n:

σ̂2 =

∑n
i=1(yi − ȳ)2

n− 1
. (5)

Estimating the population mean µ0 is similarly easy: We calculate the average performance across all players
in the league and use this as an estimate of the population mean true talent (denoted by µ̂0). Because it is
based on a league’s worth of data, µ̂0 is very low-noise. This method of estimating the parameter of a prior
distribution using observed data is called empirical Bayes. We use empirical Bayes to estimate σ2

0 as well.

3We omit the details of this calculation. You can learn this in STAT 425.
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1.3 Estimating the Population Variance

To understand the intuition for this section, we go back to equation (1). If performance is talent plus luck;
and luck is independent of talent; then the variance of performance is the variance of talent plus the variance
of luck. The variance of talent is what we are after:

Var(Talent) = Var(Performance) – Var(Luck).

To formalize this, we follow Tango et al. (2006).4 First, we expand our notation to include multiple
players. Let Ȳj be a random variable representing the performance of player j with true talent µj in nj

trials, for j = 1, 2, ..., n. We assume that the player true talents µj are i.i.d. Normal(µ0, σ
2
0) and that

Ȳj |µj ∼ Normal(σ2/nj) for j = 1, 2, ..., n. By combining these two distributional assumptions, we can
calculate the marginal distribution of Ȳj :

Ȳj ∼ Normal(µ0, σ
2
0 + σ2/nj).

We can use this to calculate an unbiased estimator for σ2
0 :

σ̂2
j = (Ȳ − µ0)

2 − σ2/nj .

We have subtracted the variance in luck (σ2/nj) from a point estimate of the variance in performance
((Ȳ − µ0)

2). The problem with this estimator is that it is very noisy because it is based on a single player’s
performance. We can reduce the noise by averaging the estimates across all players, but we want to weight
each point estimate by the inverse of its variance. To calculate the variance of σ̂2

j , we rely on two observations:

1. (Ȳ − µ0)
2/(σ2

0 + σ2/nj) is a chi-square random variable with one degree of freedom (variance = 2).

2. σ2/nj is fixed (variance = 0).

Putting these two observations together, we calculate the variance of σ̂2
j :

Var(σ̂2
j ) = Var((Ȳ − µ0)

2 − σ2/nj)

= Var((Ȳ − µ0)
2) (Observation #1)

= (σ2
0 + σ2/nj)

2 ·Var((Ȳ − µ0)
2/(σ2

0 + σ2/nj))

= (σ2
0 + σ2/nj)

2 · 2 (Observation #2)

And then we combine the point estimates σ̂2
j into a weighted mean:

σ̂2
0 =

∑p
j=1 σ̂

2
j /(σ

2
0 + σ2/nj)

2∑p
j=1 1/(σ

2
0 + σ2/nj)2

. (6)

But we have a problem! Our estimator for σ2
0 depends on σ2

0 . This is circular. Fortunately, the equation
is not too sensitive to the value of σ2

0 . The solution is to initiate σ̂2
0 to some value and iteratively update σ̂2

0

until convergence. We also make the substitution σ2 ← σ̂2 from equation (5). The update step becomes:

(σ̂2
0)

(t+1) =

∑p
j=1 σ̂

2
j /

(
(σ̂2

0)
(t) + σ̂2/nj

)2∑̂p

j=11/
(
(σ̂2

0)
(t) + σ̂2/nj

)2 . (7)

4Tango, Lichtman and Dolphin (2014). The Book: Playing the Percentages in Baseball. TMA Press.
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