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Spearman (2016 Opta Forum)
Quantifying Pitch Control

Applications: Player Positioning

Quantify the Effect of Player Positioning
• How much impact does a player’s position have on his team’s control 

of the pitch?  
• In other words, how different would the PCF be if a certain player 

weren’t on the pitch?  
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Spearman (2016 Opta Forum)
Quantifying Pitch Control

Data:

• TRACAB (provided by the forum)

Calculating times using:

• Player position

• Player velocity

• Player acceleration

• Maximum player speed

Applications:

• A new way to watch film

• A new metric for player performance

• Player positioning

Citations: 7
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Spearman et al. (2017 Sloan Conference)
Physics-Based Modeling of Pass Probabilities in Soccer
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FT(/) = 1 − FU(?)
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J
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	 (6) 

	
Computationally, we calculate this integral using a discrete simultaneous numerical integration for each 
player in the limit where / → ∞. This gives us the total probability FT that a specific player j will receive 
the pass. To determine the probability of a successful pass, we sum the probabilities for each player on the 
passing team, excluding the passer (call it set A): F[ = FTT∈[ . 
	
2.4.1. Understanding the Model 
To understand the model, we present a simple example in Figure	3 that highlights how the probabilities 
for different players to receive the pass evolve over time and space. 
	

 
Figure	3.	This	figure	shows	the	trajectory	of	the	soccer	ball	and	possible	interception	trajectories	for	three	players.	Each	
segment	of	the	ball’s	trajectory	corresponds	to	equally	spaced	temporal	intervals.	The	darkness	of	the	interception	lines	for	
each	player	represent	the	instantaneous	probability	that	the	player	receives	the	pass	where	darker	lines	indicate	a	higher	
probability.	 

In this example, the ball is moving left to right with speed decreasing with drag proportional to 20. The 
first of the players would need to move very quickly to intercept the fast moving soccer ball and 
accordingly, he only has a 17.8% chance of receiving the pass. The second player has multiple 
interception trajectories along a greater temporal and spatial region of control so his probability of 
receiving the pass is 56.0%. Finally, the last player has many possible interception trajectories, but since it 
is likely that the first two players have already intercepted the ball, his pass reception probability is only 
26.2%.  The overall probability distribution and cumulative distribution functions versus distance for this 
example are shown in Figure	4.  
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Spearman et al. (2017 Sloan Conference)
Physics-Based Modeling of Pass Probabilities in Soccer

Data:

• 38 matches from 2015-16 EPL (provided by Crystal Palace)

Applications:

• Pitch control

• Hypothetical passing

Citations: 101
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Power et al. (2017 KDD Workshop)

Figure 4: Examples of possessions highlighting di�erent match contexts: (Le�) Counter-Attack - High Block, and (Right)
Build-Up - Low Block. �e yellow line represents the Pass Risk and Pass Reward for each situation.

Figure 5: Our tree based method to add contextual features
for each model.

Figure 6: Above the line: An example of the standard stats
provided shows a basic summary of passing stats. Below the
line: An example of advanced passing stats.

5 APPLICATION I: GAME ANALYSIS
5.1 Match Analysis
Existing match summaries fail to provide a true insight into the
strategic concepts used by teams and how well they were able to ex-
ecute them. Take Figure 6 for example, which illustrates the typical
post-game summary of passing performance of two teams. Using
the basic statistics, we can see that Manchester City dominated
possession (55% vs 45%), and had more passes (402 vs 266) and a
higher completion rate (88% vs 82%). However, Manchester United
actually won the game 1-0. �is begs the question, were Manchester
United lucky or were they more e�ective in their possession compared
to City?. By using our pass risk and reward models we get a more
revealing picture.

�e two obvious measures to include are that of average pass
risk and pass danger – the la�er is a synonym for pass reward,
with higher values corresponding with more passes the team has
made that leads to potential shots on goal. Additionally, we de�ne
dangerous pass which, is a pass that is in the top 25th percentile
of passes with the highest reward. �is threshold is determined
from the training/evaluation set and not within game (i.e., it is a
�xed threshold for all games). Using these values, we can see that
although Manchester City played nearly twice as many dangerous
passes than Manchester United (131 v 72), their passes were gener-
ally less risky (14% v 17%) and more dangerous (16% v 13.5%). From
these measures, we can now get a sense of how the game is being
played.

5.2 Speci�c Play Analysis
�e ability to play the critical pass that unlocks a defense is one of
the most highly sort a�er skills in soccer. Currently, these passes
are manually de�ned during the game by a human judge, which
is highly subjective and variable. Sometimes these passes are ex-
tremely obvious (e.g. a pass that leads directly to a shot) but at
other times they could be the third or fourth previous pass that
was the critical moment in the move. By assessing the reward
of each pass during a play, we can objectively assess who is re-
sponsible for changing the a�acking momentum in a possession.
Figure 8 provides an example of a such a play. In the time line it

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1609
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Power et al. (2017 KDD Workshop)
Data:

• 726 matches from 2014-2016 EPL (provided by STATS)

Features:

• Speed of the player in possession and the intended receiver

• Speed of the nearest defender toward the passer and the receiver

• Distance of nearest defender to the passer and receiver

• Nearest defender angle to the passing line

• First time pass

• Time from regaining possession

Applications:

• Match analysis

• Ranking the riskiest players

• Ranking of best players receiving passes

Citations: 133
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Spearman (2018 Sloan Conference)
Beyond Expected Goals
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the	goal.	To	allow	the	data	to	account	for	this,	we	add	a	model	parameter,	d,	that	permits	the	shape	
of	the	above	distribution	to	vary	while	maintaining	the	monotonic	decreasing	behavior	we	expect:	

	
S 7|d = Sf( 7 − 7g )

h
	 (7)	

In	Equation	7,	7g	is	the	location	of	the	target	goal	and	Sf(i)	represents	the	data-derived	function	
displayed	in	Figure	4.		

3.4. Combination	

Using	Equation	2,	we	combine	the	conditional	probabilities	to	give	a	single,	unified	model	which	
represents	the	posterior	probability	of	scoring	with	the	next	on-ball	event	at	a	particular	location.	
The	constituent	conditional	probability	and	probability	density	maps	are	represented	spatially	in	
Figure	5.	Note	that	Figure	5a	and	Figure	5b	are	probability	maps	while	Figure	5c	and	Figure	5d	are	
spatial	probability	densities	which	must	be	spatially	integrated	to	be	interpretable	as	a	probability.		

	

Figure	5.	a)	The	scoring	model	(no	spatial	normalization,	dark	red	corresponds	to	unity).	b)	The	control	model:	probability	of	
the	attacking	team	controlling	the	ball	at	a	given	location	assuming	the	next	on-ball	event	occurs	there	(no	spatial	
normalization,	dark	red	corresponds	to	unity).	c)	Transition	model:	probability	density	of	the	location	of	the	next	on	ball-
event	(normalized	to	unity)	d)	Off-ball	scoring	opportunity	model:	probability	density	of	scoring	with	the	next	on-ball	event	
at	the	specified	location.	Red	#87	has	the	ball.	Red	#5	is	offside	and	is	not	included	in	the	computation.	The	integrated	
magnitude	of	the	OBSO	is	1.1%.	

P(G |D) =
∑

r∈R×R
P(Sr |Cr ,Tr ,D)P(Cr |Tr ,D)P(Tr |D)
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Spearman (2018 Sloan Conference)
Beyond Expected Goals

Data:

• 58 matches of tracking from 2017-2018 (provided by Hudl)

Applications:

• Tactical moment analysis

• Match analysis

• Team performance

• Player performance

Citations: 133
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Fernandez and Bornn (2018 Sloan Conference)
Wide Open Spaces:

A statistical technique for measuring space creation in professional soccer

and the obtained quality of owned space, in a given match situation. We can now deϐine with detail our
two main proposed concepts: Space Occupation Gain and Space Generation Gain.

5.1 Space Occupation Gain

Now that we have the necessary tools to represent the value of space ownership in a given time, we can
deϐine a model for identifying gain in space occupation in time. As mentioned in section 2 we propose
the Space Occupation Gain (SOG) concept as the relative amount of quality of owned space earnt during a
timewindow. An opposite concept is that of Space Occupation Loss (SOL), which relates to a negative gain
during the time window. We ϐirst deϐine the concept of gain in time G as the mean difference of quality
of space occupation Q during a time window [t + 1, t + w + 1], for a given player i. This is expressed in
Equation 7.

Gi(t) =

∑t+w+1
t′=t+1 Qi(t

′)

w
(7)

Given thedynamic nature of football, players are involved in a continuous process ofwinning and losing
space. A small gain of space can happen when the nearby defenders follow the ball when it moves away
from the player, leaving the player a better control of space. However the same can happen in a high speed
running situation between the attack and the defender, where the attacker is moving slightly faster. In
another case, a medium or high gain of space can happen when the player moves towards a free space.
Given this, it is necessary to deϐine a level of space gain from which the earned space can be considered
an actual occupational advantage and not a consequence of slower-moving contextual factors in a given
situation. We set a constant ε as a threshold to account for space occupation gain only in the cases the gain
is above that threshold. We can do the equivalent for space occupation loss. Both expressions are deϐined
in Equations 8 and 9.

SOGi(t) =

{
Gi(t) if Gi(t) ≥ ε
0 otherwise

(8)

SOLi(t) =

{
−Gi(t) if Gi(t) ≤ −ε
0 otherwise

(9)

An additional concept for reϐining the idea of gaining space quality is the way that space is gained,
speciϐically regarding a player’s speed. We present two deϐinitions: active and passive space occupation

(a) Pitch control surface (b) Pitch value based on ball position (c) Value of the owned space as prod-
uct of pitch control and ϐield value

Figure 6: Pitch control, ϐield value and value of owned space for attacking team in red, for attacking di-
rection left to right

10
2018 Research Papers Competition

Presented by:Qi (t) = PCi (t)V (t)
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Fernandez and Bornn (2018 Sloan Conference)
Wide Open Spaces:

A statistical technique for measuring space creation in professional soccer

Data:

• 20 matches of Metrica from Spain (provided by Barcelona)

Citations: 170
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Fernandez et al. (2019 Sloan Conference)
Decomposing the immeasurable sport:

A deep learning expected possession value framework for soccer

1390 Machine Learning (2021) 110:1389–1427

1 3

we require a flexible analysis framework. Such a framework should capture the complex 
spatial and contextual factors that rule the game while providing practical interpretations 
of real game situations. Some of these questions are: “which were the most relevant actions 
leading to goals?”, “in which moments of the match did we have a higher chance of scoring 
and conceding goals?”, “how should we defend against our next opponent to concede fewer 
spaces in the midfield?”, or “which are the more frequently open players to receive valu-
able passes from our creative midfielder?”.

This paper addresses the problem of estimating the expected value of soccer possessions 
(EPV) and proposes a decomposed learning approach that allows us to obtain fine-grained 
visual interpretations from neural network-based components. The EPV is essentially an 
estimate of which team will score the next goal at any given time, given all the spatiotem-
poral information available (e.g., the locations of the players and the ball, and observed 
actions). Let G ∈ {1,−1, 0} , where the values represent the team in control of the ball scor-
ing next, the other team scoring next, or the match half ending, respectively; the EPV cor-
responds to the expected value of G. The frame-by-frame estimation of EPV constitutes a 
one-dimensional time series that provides an intuitive description of how the possession 
value changes in time, as presented in Fig. 1. While this value alone can provide precise 
information about the impact of observed actions, it does not provide sufficient practical 
insight into either the factors that make it fluctuate or which other advantageous actions 
could be taken to boost EPV further. To reach this granularity level, we formulate EPV as 
a composition of the expectations of three different on-ball actions: passes, ball drives, and 
shots. Each of these components is estimated separately, producing an ensemble of models 
whose outputs can be merged to produce a single EPV estimate. Additionally, by inspect-
ing each model, we can obtain detailed insight on the impact that each of the components 
has on the final EPV estimation.

We propose two different approaches to learn each of the separated models, depending 
on whether we need to estimate a field-wide probability surface or producing only a single-
valued prediction. We propose several deep neural architectures capable of producing full 

Fig. 1  Evolution of the expected possession value (EPV) from the perspective of FC Barcelona during a 
match against Real Betis in La Liga season 2019/2020

EPV (t) = E [X |A = ρ]P(A = ρ)+E [X |A = ς]P(A = ς)+E [X |A = δ]P(A = δ)
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Fernandez et al. (2019 Sloan Conference)
Decomposing the immeasurable sport:

A deep learning expected possession value framework for soccer

Data:

• Tracking data from 2012-13 EPL (provided by STATS)

• Footovision from 2017-18 and 2018-19 FC Barcelona matches
(provided by FC Barcelona)

Applications:

• Pass analysis

• Distilling off-ball value creation

• Decision-making analysis

Citations: 148
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Shaw and Glickman (2019 Barcelona Summit)
Dynamic analysis of team strategy in professional football

  
  BARÇA SPORTS ANALYTICS SUMMIT 
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3.2 Strategic summaries and changes in formations 

Dynamic measurement and classification of formations enable us to produce strategic summaries 
of matches that communicates the defensive and offensive configurations of each team and detects 
when major tactical changes occurred.  

Figure 6 charts the defensive and offensive formations during a match between two teams – 
labelled the Red team and the Blue team – throughout the course of a match. The circles indicate 
the offensive formation observations of each team, classified according to the clusters shown in 
Figure 4; the diamonds indicate the defensive formations. Goals are indicated by a vertical dashed 
line at the top of the plot; substitutions are indicated by a vertical dashed line along the bottom of 
the plot. 

In this match, the Red team were losing 1-0 at half time. The chart indicates that the manager 
made a substitution and a significant change in formation, switching from a 3-4-3 formation 
(clusters 3 and 15 in defensive and attack, respectively) to a 4-3-3 (clusters 9 and 10).  They 
scored shortly after half time, but ultimately lost the match 2-1.  

 

 

Figure 6: Strategic summary of a match between the Red and Blue teams. Diamonds indicate defensive 
formations; circles indicate offensive formations. Y-axis labels correspond to the cluster numbers in Figure 
4. 

Automated detection of formation changes, combined with event data, enable us to investigate 
why certain tactical changes were made and evaluate the impact they had on the outcome of a 
match. Figure 7 provides a simple example2. The right-hand panels of the plot indicate the 

 
2 Note that Figures 6 and 7 depict different matches. 
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Shaw and Glickman (2019 Barcelona Summit)
Dynamic analysis of team strategy in professional football

Data:

• 180 matches from “an elite professional league”

Applications:

• Exploit opposition tactical changes

• Identify weaknesses of specific formations

• Consider formation in specific phases of possession

Citations: 37
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Shaw and Gopaladesikan (2021 Sloan Conference)
Routine Inspection: A playbook for corner kicks

	

	 4	

	
Figure	2:	(upper	left	plot)	The	target	positions	of	all	~15000	attacking	players	in	our	sample	of	corners.	(lower	left)	The	
results	of	the	15-component	GMM	fit	to	the	target	positions	-	the	seven	‘active	zones'	in	the	penalty	area	are	represented	

by	blue	ellipses	and	labelled	a-g.	(upper	right)	The	initial	positions	of	all	15000	attacking	players	-	players	colored	blue	are	
tagged	as	‘active’.	(lower	right)	The	results	of	a	6-component	GMM	fit	to	the	initial	positions	of	the	active	players.	
Target	 zones	 are	 defined	 by	 fitting	 a	 15-component	 Gaussian	 Mixture	 Model	 (GMM)	 using	 the	
expectation-maximization	algorithm	[7,8].	We	find	that	15	components	(that	is,	15	bivariate	normal	
distributions)	 are	 sufficient	 and	 that	 adding	 further	 components	 does	 not	 result	 in	 a	 significant	
improvement	in	the	log-likelihood	of	the	fit.	The	lower-left	panel	of	Figure	2	shows	each	of	the	15	
components	 in	 the	 GMM.	 The	 seven	 components	 of	 the	 model	 located	 in	 the	 penalty	 area	 are	
indicated	 by	 blue	 ellipses	 and	 labelled	 a	 to	 g:	 we	 henceforth	 refer	 to	 these	 as	 the	 active	 zones.	
Individual	points	belonging	to	an	active	zone	are	colored	accordingly.	Players	with	a	target	position	
near	one	of	these	seven	active	zones	are	assumed	to	be	directly	involved	in	the	corner	routine:	these	
are	referred	to	as	active	players.	Players	that	do	not	end	their	runs	near	an	active	zone	are	ignored	in	
the	remainder	of	this	work.	
	
The	upper-right	panel	of	Figure	2	shows	the	initial	positions	of	attacking	players,	two	seconds	before	
the	corner	is	taken.	Active	players	are	colored	blue	and	form	two	groups:	the	players	starting	inside	
the	six-yard	box	and	the	players	that	are	initially	clustered	around	the	penalty	spot.	Points	colored	
black	are	players	that	were	not	actively	involved	in	the	corner	(including	the	corner-taker,	who	is	no	
longer	 involved	 after	 taking	 the	 corner).	 To	 define	 the	 initial	 zones	 of	 active	 players	 we	 fit	 a	 6	
component	GMM	model	to	their	initial	positions	(iteratively	removing	outliers).	The	six	components	
of	our	fit	are	labelled	1-6	in	the	lower-right	panel	of	Figure	2.		
	
Allocating	players	to	initial	and	target	zones	enables	a	simple	encoding	of	player	runs.	Active	players	
are	assigned	to	an	initial	zone	(1-6)	and	a	target	zone	(a-g)	based	on	their	initial	and	target	positions.	
For	example,	in	the	left	panel	of	Figure	1,	the	four	attacking	players	that	start	their	runs	next	to	the	
penalty	 spot	 are	 initially	 in	 zone	 4,	 running	 to	 target	 zones	b,	 c	 and	d.	 Their	 runs	 are	 therefore	
encoded	 as	 {4b,4b,4c,4d}.	 In	 total	 there	 are	42	 possible	 runs	 in	 our	 system,	 corresponding	 to	 all	
pairwise	combinations	of	the	6	initial	zones	and	7	active	target	zones.		
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Shaw and Gopaladesikan (2021 Sloan Conference)
Routine Inspection: A playbook for corner kicks

Data:

• 234 matches from “an elite European professional league”
(presumably provided by SL Benfica)

Methods:

• Gaussian mixture modeling

• Non-negative matrix factorization

• Gradient boosting (for defensive role classification)

Applications:

• Analysis of an opponent’s offensive corner strategies

• Comparing the effectiveness of zonal systems

• Training optimization

Citations: 12
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Everett et al. (2022)
Contextual Expected Threat using Spatial Event Data

 

15 

 
TAx: -70.6% 

 
TAx: -67.1% 

Figure 10 – Examples of lowest TAx values e.g. lower attacking threat than average. Interpolated heatmaps 
showing more likely transition probabilities given spatial context, with heatmap colours matching team colour. 

As shown in these examples, the ball carrier is generally well marked, and most attacking options are 
being blocked by defenders. This suggests that it is difficult for the attacking team to progress the ball 
into a more dangerous position without losing the ball, and the defence is well set up to limit the threat 
of moving the ball. Therefore, we see low TAx values. 
 
7.4 Highest TAx Examples 
Examples are now shown for situations where TAx is much higher, suggesting that the attacking threat is 
higher than usual due to the location of attackers and defenders. These are shown in Figure 11. 
 

 
TAx: 320.2% 

 
TAx: 256.8% 

 

 
TAx: 238.5% 

 
TAx: 219.1% 

Figure 11 – Examples of highest TAx values e.g. higher attacking threat than average. Interpolated heatmaps 
showing more likely transition probabilities given spatial context, with heatmap colours matching team colour. 
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position well defensively against counterattacks. It is also clear that most teams struggle to maintain 
strong defensive units against Tottenham Hotspur as their mean TAx when attacking is highest. Teams 
may therefore use this model to study particular examples of poor defending and identify trends where 
Tottenham Hotspur are causing defensive vulnerabilities. This is likely due to their counter-attacking 
style, meaning that they were finding many situations with open spaces to attack. It may also be due to 
the impact of their attacking fullbacks creating overloads. Southampton also present as another team 
who struggle most defensively against teams at the top of the table. This may suggest that they are well 
prepared for counterattacks but struggle with player overloads. 
 
Overall, the teams with the lowest mean TAx value in defence are Leeds and Manchester City. Leeds 
stand out here as their mean spatial xT is the highest of all teams but they have the lowest TAx value. 
This may be due to their high-intensity style presenting high interception likelihood in the spatial xT 
model, however, as the spatial xT only considers player positions myopically, space left when the press 
is bypassed cannot be accounted for. Southampton and Manchester United have the highest mean TAx 
values when defending, suggesting that they struggle to work as a defensive unit. Manchester United 
stand out as an interesting example here, and the statistics support this, showing that they conceded 
the 13th most goals in the league despite finishing 6th in the table. 
 
7.3 Lowest TAx Examples 
To demonstrate the model in action, we generate some heatmaps of transition probabilities to see how 
the transition probabilities in the 𝑇∗ model compared to the original transition model 𝑇, giving further 
insight into the calculation of the TAx values. In these examples, the heatmaps detail the increase and 
decrease in transition probability for each zone in 𝑇∗ compared to 𝑇. Therefore, if the red team is on the 
ball, and an area is shaded red, this is suggesting that the spatial transition model, 𝑇∗, model predicts 
the ball is more likely to go to this region than average. These heatmaps are interpolated for easier 
viewing. We will first present some examples of good defensive structure and limited attacking threat 
based on the best TAx values in the dataset, shown in Figure 10. 
 

 
TAx: -78.5% 

 

 
TAx: -75.9% 
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TAx = 100× xTspatial − xToriginal

xToriginal
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Everett et al. (2022)
Contextual Expected Threat using Spatial Event Data

Data:

• SB360 data from 2021-22 EPL (provided by StatsBomb)

Methods:

• Convolutional neural network

Applications:

• More accurate possession value model

• Thread Above Expected

• Defensive Optimizer

Citations: 1


