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3 Batted Ball Outcome Model

In the first chapter, we discussed where wins come from. Wins come from runs. In the second chapter, we
discussed where runs come from. Runs come from plate appearance outcomes (walks, singles, etc.). In this
chapter (you guessed it!) we will discuss where plate appearance outcomes come from.

3.1 Tracking Data

In 2009, a company called Sportvision introduced a product to MLB called HITf/x. This product was
a camera system that used computer vision to track the baseball after it was hit by the batter. The
implications were huge. So often, a batter will hit a weak ground ball that luckily finds space between two
fielders (reflecting luck, not a repeatable skill). “That’s a hit in the scorebook,” announcers would say. Or
a batter will hit a line drive right at a fielder. The announcers are right—in the scorebook, we have no way
of distinguishing between different types of singles or different types of flyouts. With batted ball tracking,
now we do more to distinguish between skill and luck on batted balls.

The California-based Sportvision was usurped ca. 2015 by a Danish company called TrackMan1 whose
technology was based on Doppler radar. TrackMan was usurped ca. 2020 by a London-based company called
Hawk-Eye,2 who reverted us to computer vision. For the most part, the data we observe for each batted
ball are the exit speed, the launch angle and the spray angle. The exit speed is the speed of the ball as it
leaves the bat. The launch angle is the initial vertical angle of the ball trajectory off the bat. The spray
angle is the horizontal angle of the initial trajectory. MLB teams have access to additional data (ball spin,
hang time, distance, etc.), but none of those data are publicly available.3

3.2 Outcome Model

Suppose we observe a dataset of n batted balls indexed by i ∈ {1, ..., n}. For each batted ball, we observe
the batter bi, the exit speed xi1, the launch angle xi2, the spray angle xi3, and the outcome oi. We use yi
to denote the linear weight of the outcome oi; in the notation of the previous chapter, yi = ℓ(oi). We use
Yi to denote the random variable of which yi is an observation. We will present three different probability
models for Yi, starting with Model #3 (for notational reasons that will become clear).

Model #3: Yi ∼ Normal
(
f3(xi1, xi2, xi3), σ

2
)

Model #3 is a regression model. To fit the model, the task is estimating the function f3. There are many
methods for estimating f3, one of which is linear regression, which finds the best function of the form:

f3(xi1, xi2, xi3) = β0 + β1xi1 + β2xi2 + β3xi3.

It turns out that strict linear regression is not well suited for this problem because (a) there are strongly
nonlinear effects, especially for launch angle and (b) there are strong interactions between the covariates
(e.g. exit speed and launch angle). We want a more flexible model, and there are many ways to achieve this.
There is a whole subset of machine learning called supervised regression that is well suited for this problem,
but it is outside the scope of this course.4

1TrackMan got their start in golf. Many sports tech companies start in golf because enthusiasts often have disposable income.
2Hawk-Eye got their start in tennis. They were the ones responsible for the in/out replay challenges you’ve seen on TV.
3Incidentally, the fact that even these data are publicly available is a happy accident. MLB left an API intended for media

companies exposed to the public, and they decided to leave it as is after it was discovered by the public.
4You can learn about this in STAT 413.
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3.3 Player Evaluation

Jumping ahead, suppose we have (one way or another) come up with an estimate f̂3 of f3. Let’s now
introduce two competing metrics for batter evaluation.

LW(b) =

n∑
i=1

I(bi = b)ℓ(oi)

xLW3(b) =

n∑
i=1

I(bi = b)f̂3(xi1, xi2, xi3)

LW we have previously covered. xLW stands for expected linear weight. The x* prefix is a convention
in sabermetrics for indicating that we are using batted ball trajectories rather than actual outcomes. The
subscript 3 indicates that we are using Model #3.

Which do we prefer between LW and xLW3? This question is analogous to the one we faced when choosing
between RE24 and LW. The metric xLW3 introduces a restrictive assumption, that the batter only controls
their LW through their batted ball trajectories. This assumption introduces bias into our batter evaluation,
but the upshot is that it reduces variance. This is an example of the famous bias-variance tradeoff from
statistical machine learning.5 The short of it is that the optimal estimate of batter skill will lie somewhere
between the extremes of high variance and high bias, and it depends on your sample size. The smaller the
sample, the more bias you want. The larger your sample, the less bias you want. For tiny samples, we
prefer xLW3. For infinite samples, we prefer LW. Note that the decision between RE24 and LW was also an
example of the bias-variance tradeoff (LW is higher bias, lower variance relative to RE24).

Because we are facing the same problem as the previous two chapters, we use the same tools to solve it.
Suppose we have batters j ∈ {1, ..., p}, each with nj plate appearances. Let the random variable Zj denote
the per-PA residual (LW(j)− xLW3(j))/nj for batter j. Our model for Zj is:

Zj ∼ Normal(ηj , σ
2
Z/nj)

ηj ∼ Normal(0, σ2
η).

As the sample size increases, when do we switch from preferring xLW3 to preferring LW? When n > σ2
Z/σ

2
η

(see Chapter 1). What is our mean-regressed estimate of the “true talent” residual ηj? From Chapter 2:

nj/σ
2
Z · zj

nj/σ2
Z + 1/σ2

η

.

3.4 Alternative Outcome Models

Let’s keep going down this path of reducing variance. First, we introduce two alternatives to Model #3:

Model #2: Yi ∼ Normal
(
f2(xi1, xi2), σ

2
)

Model #1: Yi ∼ Normal
(
f1(xi1), σ

2
)

Model #2 drops spray angle and only considers exit speed and launch angle. Model #1 drops launch angle
and only considers exit speed. Why would we do this? When we remove a covariate from the model, we
increase the bias of the model and reduce its variance. Now we have a sequence of batter evaluation metrics
with decreasing levels of bias and increasing levels of variance:

xLW1 → xLW2 → xLW3 → LW → RE24.

How do we choose which metric to use?

5See STAT 413.
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