
7 PROJECTIONS

Caution: These lecture notes are under construction. You may find parts that are incomplete.

7 Projections

7.1 Marcel the Monkey

Perhaps the most famous (and certainly the most simple) projection model is the Marcel the Monkey1

Forecasting System, developed by sabermetrics pioneer Tom Tango in the early 2000s.2 Suppose we have
a metric we want to project for a player in year Y . The population mean for this metric is µ0, and we’ve
observed the following performance for the player in the three years leading up to year Y :

• In year Y − 3, the player’s average performance was x̄−3 in n−3 plate appearances.

• In year Y − 2, the player’s average performance was x̄−2 in n−2 plate appearances.

• In year Y − 1, the player’s average performance was x̄−1 in n−1 plate appearances.

Ignoring aging effects momentarily, the core of Marcel is to project the following performance for year Y :

2 · 600 · µ0 + 3 · n−3 · x̄−3 + 4 · n−2 · x̄−2 + 5 · n−1 · x̄−1

2 · 600 + 3 · n−3 + 4 · n−2 + 5 · n−1
. (1)

Marcel is not intended to be a competitive forecasting system. As Tango put it, “These forecasts are the
minimum level of competence that you should expect from any forecaster.” In other words, Marcel presents
a baseline against which to compare any attempt at building a projection system. Nevertheless, Marcel turns
out to be surprisingly difficult to beat, relative to its simplicity.

There are two aspects of the Marcel formula to note. First, the projection depends not only on the
player’s performance but also on the number of plate appearances. This is a critical point to understand
about projections—if a model ignores the sample size of the performance, it is missing the fundamental job
of a projection: regression to the mean. Second, the weight decreases for performances further back in time.
This is another fundamental aspect of projections: that more recent performance gets more weight.

7.2 Grid Search

We can write can approximation of the Marcel formula in a more general form by replacing the hard-coded
coefficients with variables c and w.

c · µ0 + w2 · n−3 · x̄−3 + w · n−2 · x̄−2 + n−1 · x̄−1

c+ w2 · n−3 + w · n−2 + n−1
. (2)

In this formula, c represents the amount of mean regression applied to the metric, and w ∈ (0, 1) represents
a year-to-year multiplicative dropoff in the weight on observed performance. As we saw in the chapter on
BABIP, FIP and DIPS, the ideal amount of mean regression is different depending on the metric being
forecasted, but Marcel does not allow for this possibility. By allowing c and w to vary by metric, this more
general formulation has the potential to improve upon Marcel.

The annual dropoff w in weight depends on two things: the noise in the data and the extent to which
player talent tends to change from year to year. If player talent changes very little from year to year, then
the optimal w will be closer to one, putting relatively more weight on older performance. If player talent
changes a lot from year to year, then the optimal w will be closer to zero, putting less weight on older
performance. If the noise is very low, then again the optimal w will be closer to one because less historical
data is required to supplement the most recent data. The higher the noise, the closer this moves the optimal
w to zero as more sharing across seasons is necessary to stabilize the prediction.

1This is a reference to a character on the 90s sitcom Friends. This projection system “uses as little intelligence as possible.”
2https://www.tangotiger.net/archives/stud0346.shtml
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We cannot use linear regression to determine the optimal c and w in equation (2) because these coefficients
appear in the denominator as well as in the numerator. Instead, we employ grid search, similar to how we
found the optimal exponent α in the Pythagorean formula. Grid search is very simple: We specify a grid of
candidate values for (c, w) and try all of them to find out which one yields the predictions with the lowest
error. Once we have the optimal (c∗, w∗), we plug those numbers into equation (2) to get the projections.

7.3 Projections as Multivariable Regression to the Mean

An alternative to grid search for determining the optimal amount of weight to put on each season of historical
performance is to recognize the similarity between equation (2) and regression to the mean. In the single-
variable case, regression to the mean took the following form:

n · x̄+ c · µ0

n+ c
,

where the optimal c turns out to be σ2
X/σ2

µ under the assumption of the probability model

X ∼ Normal(µ, σ2
X/n)

µ ∼ Normal(µ0, σ
2
µ).

When dealing with multiple years of data, we can use the vector X⃗ = (x̄−3, x̄−2, x̄−1, x̄0)
T to represent

a player’s performance over their career. The natural extension of the model above is to replace the single-
variable normal distributions with multivariate normal distributions:

X⃗ ∼ MVN(µ⃗,ΣX)

µ⃗ ∼ MVN(µ⃗0,Σµ).

In this model, µ⃗ represents the player’s true talent over time, and µ⃗0 represents the league mean, which may
be constant over time or may vary. The matrix ΣX is the noise covariance matrix for X̄, and it is natural
to assume that this is a diagonal matrix with entries σ2

X/ni. Lastly, Σµ is the prior covariance matrix on
true talent, reflecting the amount of spread between players and the extent to which their true talent varies
from season to season.

Given the observed performance X⃗, we can write the posterior mean of µ⃗ as

E
[
µ⃗
∣∣∣X⃗ = x⃗

]
=

(
Σ−1

X +Σ−1
µ

)−1 (
Σ−1

X x⃗+Σ−1
µ µ0

)
.

For a given entry in µ⃗, this turns out to be a linear combination of the entries of the observed x⃗ and µ⃗0,
with the weights summing to one. In other words, we get a projection that looks like

w0 · µ0 + w−3 · x̄−3 + w−2 · x̄−2 + w−1 · x̄−1

w0 + w−3 + w−2 + w−1
,

mirroring equations (1) and (2). Note that the weights w· depend on the sample sizes n·.

7.4 Aging Curves

An important component of projections we have disregarded to this point is the aging curve. The general
model for the aging curve is that there is some function f(·) of the age which has an additive effect on player
performance. If Xit, µit and ait represent the performance, true talent and age of player i in season t, then

E[Xit] = µit + f(ait).

For the sake of the preceding sections, we can replace the performance Xit with the age-adjusted performance
Xit − f(ait) to project player performance relative to the aging curve. The challenge is estimating the aging
curve f(·). There are two popular approaches, each with its drawbacks.
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7.4.1 Regression

The regression-based method is to create a regression model for player performance, treating each player-
season as an observation. In this setup, we can regress player performance on age, using a flexible method
such as a Generalized Additive Model (GAM) to estimate the relationship between age and performance.
This simple approach suffers from an obvious form of selection bias: Only the most talent players will be
included in the sample at extremly young ages and extremely old ages, making the aging curve appear flatter
than it really is.

Typically, the solution for this selection bias problem is to introduce player random effects to control for
player talent. It is not clear how effect this approach is for mitigating the effects of selection bias, and some
researchers have tried imputation to get around this problem.3

7.4.2 The Delta Method

The delta method is an alternative approach to aging curves, also championed by Tango.4 Instead of
considering player-seasons Xit as the observation unit, this method considers changes (i.e. the “delta”) from
season to season Xi(t+1) −Xit as the observation unit. This has the nice feature that for calculating each
step from one age to the next in the aging curve, the same players are included in the sample. By modeling
Xi(t+1) − Xit as a function of age, we get the derivative of the aging curve, which we integrate to get an
estimate of the aging curve.

The downside to the delta method is that it suffers from a different kind of selection bias. Players with
extremely low values of Xit (often due to luck) are more likely to drop from the sample, causing a downward
bias on Xi(t+1) −Xit. In other words, the aging curve appears steeper than it really is. There may be a way
to mitigate this selection bias by using propensity scores to adjust samples for player dropout probabilities
although this has not been explored in public literature.

7.5 Level Translations

In baseball, a common problem is projecting the future Major League performance of minor league prospects.
Of course it would be problematic to treat minor league performance the same as Major League performance
when building projections, and that is where level translations come into play. The task of level translations
is intimately connected to aging curves, with similar techniques to regression and the delta method (based
on players moving between levels) available (with similar pitfalls). Especially for young minor leaguers, the
question of aging curve and level translation are intertwined because prospects tend to move up through the
minor league system (or else drop out) as they age, making it more difficult to separate the effects of level
and the effects of aging.

3Schukers, Lopez and Macdonald (2021) “What does not get observed can be used to make age curves stronger: Estimating
player age curves using regression and imputation” https://arxiv.org/abs/2110.14017

4https://www.tangotiger.net/aging.html
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