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Caution: These lecture notes are under construction. You may find parts that are incomplete.

2 Base-Out Run Expectancy and Linear Weights

In Chapter ??, we learned where wins come from: Wins are composed of runs. But where do runs come
from? That is the focus of this chapter.

2.1 Markov Chain Model

Baseball is often described as a sport that lends itself particularly well to statistical analysis. The primary
reason is that a baseball game is composed of discrete events. First, one batter faces one pitcher, resulting
in an outcome. Then, a second batter comes to the plate and produces a new outcome. And so on. This
makes it relatively straightforward to isolate the impact of individual players on the number of runs scored
by either team. The first building block of this analysis is the base-out run expectancy: Given the bases
occupied and the number of outs, what is the expected number of runs that will score in the remainder of
the inning?

To define base-out run expectancy, we start with theMarkov chainmodel. A Markov chain is a probability
model consisting of a set S of states and a transition probability function p : S × S → [0, 1] between the
states. We observe a sequence of states, and the probability of transitioning from one state to the next
depends only on the current state. When using a Markov chain to model data, how we define the state is
important modeling decision. We want the state to include all of the information necessary for determining
the probabilities of transitioning to each possible subsequent state, and at the same time we prefer a simpler,
more parsimonious model.

In baseball, the most common application of the Markov chain model is to describe the progression of
an inning as a sequence of static states between plate appearances. We define the base-out state to be
(b1, b2, b3, o), where bk ∈ {0, 1} indicates whether base k is occupied, for k ∈ {1, 2, 3}; and o ∈ {0, 1, 2}
represents the number of outs at the beginning of a plate appearance. Every inning starts in state (0, 0, 0, 0).
In addition to the 24 (= 2×2×2×3) non-terminal states, we need four terminal states (r) for r ∈ {0, 1, 2, 3}
(corresponding to the number of runs scored on the final transition—necessary for calculations below).

With the state defined, what remains is to define the transition probabilities between states. One could
approach this different ways, but the most common approach is to use the empirical transition probabilites
observed in a chosen dataset. For example, if we observe the state (0, 0, 1, 0) 100 times in our dataset, and
60 of those times the next state is (0, 0, 1, 1), then our estimated transition probability from (0, 0, 1, 0) to
(0, 0, 1, 1) is 60%. Because we are often working with big samples of data (the typical MLB regular season has
approximately 170,000 plate appearances), these empirical transition probabilities are generally reasonable
estimates. We will use p(s, s′) to denote the probability of transitioning from state s to state s′.

2.2 Base-Out Run Expectancy

Using the Markov chain model for the progression of an inning, we can calculate the expected number of
runs scored from any base-out state to the end of the inning. We use r(s, s′) to denote the reward (i.e. the
number of runs scored) on the transition from state s to state s′. We can write it as follows:

r(s, s′) =

{
(b1 + b2 + b3 + o) + 1− (b′1 + b′2 + b′3 + o′) if s′ is not terminal

r′ if s′ is terminal

We use v(s) to denote the value (i.e. the rest-of-inning run expectancy) of state s. The value function
satisfies the following recursive relationship (a simplified version of the Bellman equation):

v(s) =
∑
s′∈S

p(s, s′){r(s, s′) + v(s′)}

To calculate v(·), we initialize v(s) = 0 for all s ∈ S and then iterate the above equation until convergence.
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2.3 Player Evaluation

In this section we assume that we observe n plate appearances indexed by i ∈ {1, ..., n}. For each plate
appearance, we observe:

• the batter bi ∈ {1, ..., p};

• the outcome oi ∈ {Strikeout, Groundout, Flyout, Hit by Pitch, Walk, Single, Double, Triple, Home Run};

• the base-out state si ∈ S before the final pitch of the plate appearance;

• the base-out state s′i ∈ S after the final pitch of the plate appearance; and

• the number of runs scored ri ∈ {0, 1, 2, 3} on the final pitch of the plate appearance.

2.3.1 RE24

We come to our first player evaluation metric of the course. From v(·) above, we have the run expectancy
of each base-out state. RE24 is the change in run expectancy summed over a batter’s plate appearances:

RE24(b) =

n∑
i=1

I{bi = b}(ri + v(s′i)− v(si)).

2.3.2 Linear Weights

To calculate linear weights, we start with a similar calculation to RE24, but we average the change in run
expectancy within outcome, rather than summing within batter. The linear weight of outcome o is given by:

ℓ(o) =

∑n
i=1 I{oi = o}(ri + v(s′i)− v(si))∑n

i=1 I{oi = o}
.

Once we have the linear weight ℓ(·) of each outcome, the metric LW is simply these linear weights summed
over a batter’s plate appearances:

LW(b) =

n∑
i=1

I{bi = b}ℓ(oi).

Discussion: What are the advantages and disadvantages of RE24 and LW relative to each other?

2.4 Regression to the Mean

There is an analogy to be drawn between the RE24/LW relationship and the relationship between winning
percentage and Pythagorean record from the previous chapter. Just like winning percentage, RE24 is mea-
surement that carries more descriptive meaning (it measures what actually matters). Just like Pythagorean
record, LW is a more stable measurement. We saw in the previous chapter that Pythagorean record is a
better predictor of future winning percentage than winning percentage itself (unless the sample size is more
than several hundred games). One might ask a similar question for RE24 and LW: When do we switch to
preferring RE24 over LW?

Let’s instead acknowledge that the question presents a false dichotomy. A better question is: How
can we use both RE24 and LW to best predict future RE24? This is where regression to the mean comes in.
Recycling notation from the previous chapter, for batter j ∈ {1, ..., p}, we use nj to denote the number of plate
appearances, and we use the random variable Zj to represent the average residual (RE24(j)− LW(j))/nj .

Zj ∼ Normal(ηj , σ
2
Z/nj)

ηj ∼ Normal(0, σ2
η).
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Recognizing this as a Bayesian model, we can use Bayes’ rule to derive the posterior distribution of ηj
given Zj = zj :

ηj | Zj = zj ∼ Normal

(
nj/σ

2
Z · zj

nj/σ2
Z + 1/σ2

η

,
1

nj/σ2
z + 1/σ2

η

)
.

In the previous chapter, we chose between ignoring the residual or fully including it in our prediction.
Using Xj to represent LW(j)/nj , and using Yj to represent RE24(j)/nj , we have the following two options:

Xj = Xj + 0 vs. Yj = Xj + Zj

Now we have derived a third option that is a weighted average of the two extremes:

Xj +
nj/σ

2
Z · Zj

nj/σ2
Z + 1/σ2

η

.

As opposed to making a sudden switch from one extreme to the other, this third estimator smoothly tran-
sitions from ignoring the residual to giving it full weight. We make the following observations:

1. When nj = σ2
Z/σ

2
η (the point at which our preference between Xj and Yj flips in the previous chapter),

our estimator is Xj = Zj/2.

2. As nj → ∞, our estimator converges to Yj = Xj + Zj .

3. As nj → 0, our estimator converges to Xj .

Example: Suppose that the “true talent” of the residual RE24 – LW for MLB batters is normally
distributed with mean zero and standard deviation 0.01. Suppose further that the noise variance of
observed performance is 0.2/n, where n is the number of plate appearances observed. If a batter
accumulates 30 LW and 60 RE24 over 1,000 plate appearances, what is the posterior mean of their “true
talent” residual per plate appearance (RE24 – LW)/n?

nj/σ
2
Z · zj

nj/σ2
Z + 1/σ2

η

=
1000/0.2 · (60− 30)/1000

1000/0.2 + 1/0.012
=

5000 · 0.03
5000 + 10000

=
1 · 0.03
1 + 2

=
0.03

3
= 0.01

2.5 Check Your Understanding

1. How is a batter’s LW (linear weight) calculated? No need to write out the math—you can just explain
with words. You may assume that you are given base-out run expectancy but not that you are given
linear weights of outcomes.

2. What is the unit of measurement for RE24 and LW? For example, if a batter accumulates 10 RE24 in
a season, that means 10 what?

3. Suppose that the “true talent” of the residual RE24 – LW for MLB batters is normally distributed
with mean zero and standard deviation 0.02. Suppose further that the noise variance of observed
performance is 0.2/n, where n is the number of plate appearances observed. If a batter accumulates
30 LW and 60 RE24 over 1,000 plate appearances, what is the posterior mean of their “true talent”
residual per plate appearance (RE24 – LW)/n?
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